振り子の計算(その1)


[1]運動方程式

振り子には、図のような力が働く。ここで 重力は\( \ W=mg\ \)で糸の張力は\(\ \ T=W\cos\theta\ \) である。

\(W\ \)と\(\ T\ \)の合力\(\ f\ \)の向きは図のように半径\(\ l\ \)の円周の接線方向となり、その大きさは

\(f=W\sin\theta=mg\sin\theta\) (1)

である。この合力\(\ f\ \)により、重りは円弧を描くように往復運動をする。ここで、運動を円軌道として考えるために、振り子の釣り合いの位置 O から、円弧に沿って\(\ s\ \)軸をとる。この合力\(\ f\ \)は重りを\(\ s\ \)軸の負の方向に運動させる力となるため、重りの運動方程式は

\( m\dfrac{d^2s}{dt^2}=-f=-mg\sin\theta\ \) (2)

すなわち

\( \dfrac{d^2s}{dt^2}=-g\sin\theta\ \) (3)

と表すことが出来る。 円弧の長さは \(\ s=l\ \theta\ \)で表せられ、2回微分は

\(\ \dfrac{d^2s}{dt^2}=l\dfrac{d^2\theta}{dt^2}\ \) (4)

となるので、運動方程式は重りの角度\(\ \theta\ \)に対して

\( \dfrac{d^2\theta}{dt^2}=-\dfrac{g}{l}\sin\theta\ \) (5)

と表すことが出来る。

[2]運動方程式の近似解

 (5)式の運動方程式は、三角関数を含んでいるため、このままでは階を求めることが難しい。但し、円弧の角度\(\ \theta\ \)が微少の場合、三角形の高さ\(\ x=\sin\theta\ \)は円弧の長さ\(\ s\ \)にほぼ等しくなり
\(\quad x\ \approx\ s\ \)とおけるため

\( \sin\theta=\dfrac{x}{l}\ \approx\ \dfrac{s}{l}=\dfrac{l\theta}{l}=\theta\ \) (6)

となり、運動方程式は

\( \dfrac{d^2\theta}{dt^2}=-\omega^2\theta\qquad \omega:=\sqrt{\dfrac{g}{l}}\quad\) (7)

と表すことが出来る。これは単振動で良く近似出来る。一般解は

\( \theta=A\sin\omega t+B\cos\omega t \) (8)

ここで、 \( t=0\ \)で\(\ \theta=\theta_0\ \)として、(8)式に代入すると

\( \theta_0=A\sin\omega\times 0+B\cos\omega\times 0=B\quad\therefore B=\theta_0\)

つぎに、(8)式を \(t\) で微分して、\(\ t=0\ \)で\(\ \dfrac{d\theta}{dt}=0\ \) とすると

\( \dfrac{d\theta}{dt}=A\omega\cos\omega t-B\omega\sin\omega t\)

\(\qquad =A\omega\cos\omega\times 0-B\omega\sin\omega\times 0=A\omega=0 \)

よって、\(\ A=0\ \)となり、(8)式は\(\quad\theta=\theta_0\cos\omega t\ \) (9)

と決定される。このように解が周期関数で表される振動を単振動といい、単振動で近似出来る振り子を単振り子といいます。

\(\ \omega=\sqrt{\cfrac{g}{l}}\ \) は角振動数 [rad/s] と呼ばれる。

角振動数\(\ \omega\ \)を 2\(\pi\) で割った値は、重りが1秒間に往復する回数を表し、振動数 \(\ f\ \)[Hz}と呼ばれています。

\( f=\dfrac{\omega}{2\pi}=\dfrac{1}{2\pi}\sqrt{\dfrac{g}{l}}\ \,\,\) Hz\(\quad\)(10)

重りが一往復するのに必要な時間は、周期 \(T\) [s] といい、振動数の逆数になる。

\(T=\dfrac{1}{f}=\dfrac{2\pi}{\omega}=2\pi\sqrt{\dfrac{l}{g}}\quad\)(11)







コメントを残す

メールアドレスが公開されることはありません。

CAPTCHA