月別アーカイブ: 2019年6月

楕円積分


[1]楕円の周の長さを求める

まず \(\,x=a\sin\theta\,,\,y=b\cos\theta\,\) で表される楕円の周の長さを求める.計算は第1象限の弧だけ求めて4倍することとする。

曲線の微少長さ\(\,ds\,\)はピタゴラスの定理から以下のようになる。

\(\quad ds=\sqrt{dy^2+dx^2}\quad\cdots\,\) (1)

弧の長さ(\(L\))は、これを全体に渡って積分することで求めることが出来る。

\(\quad x=a\sin\theta\,\) から\(\quad dx=a\cos\theta\,d\theta\,\)
\(\quad y=b\cos\theta\,\) から\(\quad dy=-b\sin\theta\,d\theta\,\)なので

\(\quad L=\displaystyle\int\sqrt{dy^2+dx^2}\,\)

\(\qquad =4\displaystyle\int_0^{\frac{\pi}{2}}\sqrt{b^2\sin^2\theta+a^2\cos^2\theta}\,d\theta\)

\(\qquad =4a\displaystyle\int_0^{\frac{\pi}{2}}\sqrt{1-\sin^2\theta+\frac{b^2}{a^2}\sin^2\theta}\,d\theta\)

ここで\(\,a\gt b\,\)として、\(\,q=\dfrac{a^2-b^2}{a^2}\,\)とおくと

\(\quad L=4a\displaystyle\int_0^{\frac{\pi}{2}}\sqrt{1-q\sin^2\theta}\,d\theta\,\)となる

[2]級数展開

\(\sqrt{1-q\sin^2\theta}\,\)はそのままでは積分できないので、級数展開する。

例えば、\(\,(1+x)^m\,\)をマクローリン展開すると

\(\quad(1+x)^m=1+m\dfrac{x}{1!}+m(m-1)\dfrac{x^2}{2!}+\,m(m-1)(m-2)\dfrac{x^3}{3!}\)

\(\qquad \cdots+m\cdots(m-n+1)\dfrac{x^n}{n!}+\)

ここで、例えば \(m=-\dfrac{1}{2}\)を代入すると

\(\quad(1+x)^{-\frac{1}{2}}=1+\left(-\dfrac{1}{2}\right)x+\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)\dfrac{x^2}{2!}\)

\(\qquad+\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)\left(-\dfrac{5}{2}\right)\dfrac{x^3}{3!}+\cdots\)

\(\qquad =1-\dfrac{1}{2}\dfrac{x}{1!}+\dfrac{1\cdot 3}{2^2}\dfrac{x^2}{2!}-\dfrac{1\cdot 3\cdot 5}{2^3}\dfrac{x^3}{3!}+\)

◎ここでは、\((1-x)^m=1-m\dfrac{x}{1!}+m(m-1)\dfrac{x^2}{2!}-\)で

\(\quad m=\dfrac{1}{2}\,\qquad x=q\sin^2\theta\,\)とすると

\((1-q\sin^2\theta)^{\frac{1}{2}}=1-\dfrac{1}{2}q\sin\theta-\dfrac{1}{2^2\cdot 2!}q^2\sin^4\theta\)

\(\qquad-\dfrac{1\cdot 3}{2^3\cdot 3!}q^3\sin^6\theta\cdots-\dfrac{1\cdot 3\cdot 5\cdot(2n-3)}{2^n\cdot n!}q^n\sin^{2n}\theta\,\cdots\)

[3]二重階乗

二重階乗\(\,n!!\,\)は自然数\(\,n\,\)に対して一つ飛ばしに積を取る。

\(\quad(2n)!!=(2n)(2n-2)(2n-4)\cdots(4)(2)=2^nn!\)

\(\quad(2n+1)!!=(2n+1)(2n-1)\cdots(3)(1)=\dfrac{(2n+1)!}{(2n)!!}\,\)

なので、一般項の分母 \(\,2^nn!\,\)は\(\,(2n)!!\,\)となる。

分子は\(\quad 1\cdot 3\cdot 5\cdot(2n-3)=\dfrac{(2n-1)!!}{2n-1}\,\) と表せる

[4]\(\,\sin^n\theta\,\)の積分

[2]で出てきた\(\,\,\displaystyle\int_0^{\frac{\pi}{2}}\sin^{2n}\theta\,\,\)はそのままでは計算できない。

まず、部分積分を再確認。

\(\,\,\displaystyle\int f(x)g'(x)dx=f(x)g(x)-\displaystyle\int f'(x)g(x)dx\,\)である。

\(\,I_n=\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx\,\,\)とすると、
\( I_0=\dfrac{\pi}{2}\,,\quad I_1=\left[-\cos x\right]_0^{\frac{\pi}{2}}=1\,\)となる

\(\,I_n=\displaystyle\int_0^{\frac{\pi}{2}}\sin^{n-1}x\sin x\,dx\,\)で

\(\,f(x)=\sin^{n-1}x\quad g(x)=-\cos x\,\)とおくと部分積分より

\(I_n=\left[-\sin^{n-1}x\cos x\right]_0^{\frac{\pi}{2}}+(n-1)\displaystyle\int_0^{\frac{\pi}{2}}\sin^{n-2}x\cos^2x\,dx\)

\(\,\,=0+(n-1)\displaystyle\int_0^{\frac{\pi}{2}}\sin^{n-2}x(1-\sin^2x)dx\)

\(\,\,=(n-1)\displaystyle\int_0^{\frac{\pi}{2}}\sin^{n-2}x\,dx-(n-1)\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx\)

\(n\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx=(n-1)\displaystyle\int_0^{\frac{\pi}{2}}\sin^{n-2}x\,dx\,\)なので

\(\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx=\dfrac{n-1}{n}\displaystyle\int_0^{\frac{\pi}{2}}\sin^{n-2}x\,dx\quad\)となるので

\(I_n=\dfrac{n-1}{n}I_{n-2}\quad\)という漸化式が求められる。より

\(I_n=\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx=\dfrac{(n-1))(n-3)\cdots}{n(n-2)(n-4)\cdots}\,\)

となり、(n,)が奇数の場合は

\(I_n=\dfrac{(n-1)(n-3)\cdots 4\cdot 2}{n(n-2)\cdots 5\cdot 3}I_1\,\)となり偶数では

\(I_n=\dfrac{(n-1)(n-3)\cdots 3\cdot 1}{n(n-2)\cdots 4\cdot 2}I_0\,\)となる。よって

\(\displaystyle\int_0^{\frac{\pi}{2}}\sin^{2n}\theta\,d\theta=\dfrac{(2n-1)!!}{(2n)!!}\dfrac{\pi}{2}\,\)となる。

[5]弧の長さの計算

これで、準備が終わったので \(\,L\,\)の長さを計算する。

\(L=4a\displaystyle\int_0^{\frac{\pi}{2}}\sqrt{1-q\sin^2\theta}\,d\theta\qquad q=(a^2-b^2)/a^2\)

\(\quad=4a\displaystyle\int_0^{\frac{\pi}{2}}\left(1-\displaystyle\sum_{n=1}^{\infty}\dfrac{(2n-1)!!}{(2n)!!}\dfrac{q^n}{2n-1}\sin^{2n}\theta\right)d\theta\)

\(\,=4a\displaystyle\int_0^{\frac{\pi}{2}}d\theta-\displaystyle\sum_{n=1}^{\infty}\dfrac{(2n-1)!!}{(2n)!!}\dfrac{q^n}{2n-1}4a\displaystyle\int_0^{\frac{\pi}{2}}\sin^{2n}\theta\,d\theta\)

\(\,=2a\pi\left(1-\displaystyle\sum_{n=1}^{\infty}\left[\dfrac{(2n-1)!!}{(2n)!!}\right]^2\dfrac{q^n}{2n-1}\right)\)

これで、計算完了。結構面倒くさい!!

[6]楕円積分

楕円の弧の長さの計算に使った積分は「第2標準形の完全楕円積分」というらしい。

\(E(m)=\displaystyle\int_0^{\frac{\pi}{2}}\sqrt{1-m\sin^2\theta}\,d\theta=\dfrac{\pi}{2}\left(1-\displaystyle\sum_{n=1}^{\infty}\left[\dfrac{(2n-1)!!}{(2n)!!}\right]^2\dfrac{m^n}{2n-1}\right)\)

振り子の計算で使った「第1標準形の完全楕円積分」は\(\,K(m)\,\)の形で表される積分で

\(K(m)=\displaystyle\int_0^{\frac{\pi}{2}}\dfrac{d\theta}{\sqrt{1-m\sin^2\theta}}\quad\)の様に書かれます。

楕円の弧の計算と同様に級数展開します。

\((1-m\sin^2\theta)^{-\frac{1}{2}}=1+\dfrac{1}{2}m\sin^2\theta+\dfrac{3}{8}m^2\sin^4\theta\)

\(\qquad+\dfrac{15}{48}m^3\sin^6\theta+\cdots=\displaystyle\sum_{n=1}^{\infty}\dfrac{(2n-1)!!}{(2n)!!}m^n\sin^{2n}\theta\)

この級数も \(\,m\lt 1\,\)の範囲で一様収束するので、項別積分が可能です。

\(\displaystyle\int_0^{\frac{\pi}{2}}((1-m\sin^2\theta)^{-\frac{1}{2}}d\theta=\displaystyle\int_0^{\frac{\pi}{2}}\displaystyle\sum_{n=1}^{\infty}\dfrac{(2n-1)!!}{(2n)!!}m^n\sin^{2n}\theta\)

\(\qquad=\displaystyle\sum_{n=1}^{\infty}\dfrac{(2n-1)!!}{(2n)!!}m^n\displaystyle\int_0^{\frac{\pi}{2}}\sin^{2n}\theta\,d\theta\)

\(\qquad=\dfrac{\pi}{2}\left(\displaystyle\sum_{n=1}^{\infty}\left[\dfrac{(2n-1)!!}{(2n)!!}\right]^2\,m^n\right)\)







振り子の計算(その2)


エネルギー保存の法則から振り子の周期 \(T\) の式を求める。
振り子の支点より水平方向に \(\ x\ \)軸をとり、鉛直方向に \(\ y\ \)軸をとると、エネルギー保存則から、次式が成立する

\( \dfrac{1}{2}mv^2=mg\Delta h\quad\) (21)

ここで、\(\ v\ \)は重りが円周方向に移動する速度で、\(\Delta h\ \)は重りの落下距離である。ここで

\(\Delta h=l\cos\theta-l\cos\theta_0=l\ (\cos\theta-\cos\theta_0)\quad\) (22)
なので

\( \dfrac{1}{2}mv^2=mgl(\cos\theta-\cos\theta_0)\)
\( \therefore \ v=\sqrt{2gl(\cos\theta-\cos\theta_0)}\quad\) (23)

さらに

\( v=\dfrac{ds}{dt}=l\dfrac{d\theta}{dt}\quad\) (24)

なので、以下の式が得られる。

\( l\dfrac{d\theta}{dt}=\sqrt{2gl(\cos\theta-\cos\theta_0)}\quad\)(25)

\( dt=\dfrac{1}{\sqrt{2}\omega}\dfrac{d\theta}{\sqrt{\cos\theta-\cos\theta_0}}\quad\) (26)

\(\quad\because\,\,\omega:=\sqrt{\dfrac{g}{l}}\)

この(26)式を積分すると周期を求めることが出来る。積分範囲を4分の1周に相当する \(\ t=T/4\ \)とすると、右辺の積分範囲は\(\ \theta=0\sim\theta_0\ \)となるので、

\( \displaystyle\int_0^{\frac{T}{4}}dt=\dfrac{1}{\sqrt{2}\omega}\displaystyle\int_0^{\theta_0}\dfrac{d\theta}{\sqrt{\cos\theta-\cos\theta_0}}\quad\) (27)

\(\therefore\,\, T=4\dfrac{1}{\sqrt{2}\omega}\displaystyle\int_0^{\theta_0}\dfrac{d\theta}{\sqrt{\cos\theta-\cos\theta_0}}\quad\) (28)

この積分を行うために、半角公式を使って以下の変換を行う

\( \cos\theta=1-2\sin^2\frac{\theta}{2}\quad\cos\theta_0=1-2\sin^2\frac{\theta_0}{2}\)

ここで \(\,\,k:=\sin\frac{\theta_0}{2}\quad \sin\phi:=\sin\frac{\theta}{2}/k\,\,\)とすると

\( \cos\theta-\cos\theta_0=1-2\sin^2\frac{\theta}{2}-\left(1-2\sin^2\frac{\theta_0}{2}\right)\)

\(\quad=2\left(\sin^2\frac{\theta_0}{2}-\sin^2\frac{\theta}{2}\right)=2k^2\cos^2\phi\,\,\)となる

\(k\sin\phi=\sin\frac{\theta}{2}\,\,\)を両辺微分して\(\,\,k\cos\phi\,d\phi=\frac{1}{2}\cos\frac{\theta}{2}\,d\theta\)

\(d\theta=\dfrac{2k\cos\phi\,d\phi}{\cos\frac{\theta}{2}}=\dfrac{2k\cos\phi\,d\phi}{\sqrt{1-\sin^2\frac{\theta}{2}}}=\dfrac{2k\cos\phi\,d\phi}{\sqrt{1-k^2\sin^2\phi}}\)

なので

\(\dfrac{d\theta}{\sqrt{\cos\theta-\cos\theta_0}}=\dfrac{1}{\sqrt{2}k\cos\phi}\dfrac{2k\cos\phi\,d\phi}{\sqrt{1-k^2\sin^2\phi}}\)

\(\quad=\dfrac{\sqrt{2}\,d\phi}{\sqrt{1-k^2\sin^2\phi}}\,\,\)となり、第1種楕円積分の形になる。







振り子の計算(その1)


[1]運動方程式

振り子には、図のような力が働く。ここで 重力は\( \ W=mg\ \)で糸の張力は\(\ \ T=W\cos\theta\ \) である。

\(W\ \)と\(\ T\ \)の合力\(\ f\ \)の向きは図のように半径\(\ l\ \)の円周の接線方向となり、その大きさは

\(f=W\sin\theta=mg\sin\theta\) (1)

である。この合力\(\ f\ \)により、重りは円弧を描くように往復運動をする。ここで、運動を円軌道として考えるために、振り子の釣り合いの位置 O から、円弧に沿って\(\ s\ \)軸をとる。この合力\(\ f\ \)は重りを\(\ s\ \)軸の負の方向に運動させる力となるため、重りの運動方程式は

\( m\dfrac{d^2s}{dt^2}=-f=-mg\sin\theta\ \) (2)

すなわち

\( \dfrac{d^2s}{dt^2}=-g\sin\theta\ \) (3)

と表すことが出来る。 円弧の長さは \(\ s=l\ \theta\ \)で表せられ、2回微分は

\(\ \dfrac{d^2s}{dt^2}=l\dfrac{d^2\theta}{dt^2}\ \) (4)

となるので、運動方程式は重りの角度\(\ \theta\ \)に対して

\( \dfrac{d^2\theta}{dt^2}=-\dfrac{g}{l}\sin\theta\ \) (5)

と表すことが出来る。

[2]運動方程式の近似解

 (5)式の運動方程式は、三角関数を含んでいるため、このままでは階を求めることが難しい。但し、円弧の角度\(\ \theta\ \)が微少の場合、三角形の高さ\(\ x=\sin\theta\ \)は円弧の長さ\(\ s\ \)にほぼ等しくなり
\(\quad x\ \approx\ s\ \)とおけるため

\( \sin\theta=\dfrac{x}{l}\ \approx\ \dfrac{s}{l}=\dfrac{l\theta}{l}=\theta\ \) (6)

となり、運動方程式は

\( \dfrac{d^2\theta}{dt^2}=-\omega^2\theta\qquad \omega:=\sqrt{\dfrac{g}{l}}\quad\) (7)

と表すことが出来る。これは単振動で良く近似出来る。一般解は

\( \theta=A\sin\omega t+B\cos\omega t \) (8)

ここで、 \( t=0\ \)で\(\ \theta=\theta_0\ \)として、(8)式に代入すると

\( \theta_0=A\sin\omega\times 0+B\cos\omega\times 0=B\quad\therefore B=\theta_0\)

つぎに、(8)式を \(t\) で微分して、\(\ t=0\ \)で\(\ \dfrac{d\theta}{dt}=0\ \) とすると

\( \dfrac{d\theta}{dt}=A\omega\cos\omega t-B\omega\sin\omega t\)

\(\qquad =A\omega\cos\omega\times 0-B\omega\sin\omega\times 0=A\omega=0 \)

よって、\(\ A=0\ \)となり、(8)式は\(\quad\theta=\theta_0\cos\omega t\ \) (9)

と決定される。このように解が周期関数で表される振動を単振動といい、単振動で近似出来る振り子を単振り子といいます。

\(\ \omega=\sqrt{\cfrac{g}{l}}\ \) は角振動数 [rad/s] と呼ばれる。

角振動数\(\ \omega\ \)を 2\(\pi\) で割った値は、重りが1秒間に往復する回数を表し、振動数 \(\ f\ \)[Hz}と呼ばれています。

\( f=\dfrac{\omega}{2\pi}=\dfrac{1}{2\pi}\sqrt{\dfrac{g}{l}}\ \,\,\) Hz\(\quad\)(10)

重りが一往復するのに必要な時間は、周期 \(T\) [s] といい、振動数の逆数になる。

\(T=\dfrac{1}{f}=\dfrac{2\pi}{\omega}=2\pi\sqrt{\dfrac{l}{g}}\quad\)(11)