月別アーカイブ: 2022年1月

ベクトル解析



\(\def\bm{\boldsymbol}\)
\(\def\di{\displaystyle}\)
\(\def\ve{\varepsilon_0}\)
\(\def\dd#1#2{\dfrac{\partial #1}{\partial #2}}\)
\(\def\dda#1#2{\dfrac{\partial^2 #1}{\partial #2}}\)
光の速度で、ベクトル解析の公式を使ったので、まとめておきます。

1.はじめに

(1) ベクトルの内積
\(\quad\bm{a}\cdot\bm{b}=a_xb_x+a_yb_y+a_zb_z=\di\sum^3_ia_ib_i\)
(2) ベクトルの外積
\(\quad\bm{a}\times\bm{b}=(a_yb_z-a_zb_y,a_zb_x-a_xb_z,a_xb_y-a_yb_x)\)
\(\quad(\bm{a}\times\bm{b})_i=\di\sum_{j,k=1}^3\epsilon_{i,j,k}\,a_jb_k\)
\begin{align}\hspace{-20mm}\epsilon_{i,j,k}=1&\,:(i,j,k)=(1,2,3),(2,3,1),(3,1,2)\\
-1&\,:(i,j,k)=(1,3,2),(2,1,3),(3,2,1)\\
0&\,: other\end{align}
3. スカラー三重積
\(\quad\bm{A}\cdot(\bm{B}\times\bm{C})=\bm{B}\cdot(\bm{C}\times\bm{A})=\bm{C}\cdot(\bm{A}\times\bm{B})\)
\begin{align}
\bm{A}\cdot(\bm{B}\times\bm{C})&=A_x(\bm{B}\times\bm{C})_x+A_y(\bm{B}\times\bm{C})_y+A_z(\bm{B}\times\bm{C})_z\\[2pt]
&=A_x(B_yC_z-B_zC_y)+A_y(B_zC_x-B_xC_z)+A_z(B_xC_y-B_yC_x)\\[2pt]
&=A_xB_yC_z-A_xB_zC_y+A_yB_zC_x-A_yB_xC_z+A_zB_xC_y-A_zB_yC_x\\[2pt]
&=B_x(C_yA_z-C_zA_y)+B_y(C_zA_x-C_xA_z)+B_z(C_xA_y-C_yA_x)\\[2pt]
&=B_x(\bm{C}\times\bm{A})_x+B_y(\bm{C}\times\bm{A})_y+B_z(\bm{C}\times\bm{A})_z\\
&=\bm{B}\cdot(\bm{C}\times\bm{A})\\[-40pt]
\end{align}
\(\qquad\)また、\(\quad\bm{A}\cdot(\bm{B}\times\bm{C})=\left|\begin{array}{ccc}A_x & A_y & A_z\\ B_x & B_y & B_z\\C_x & C_y & C_z\end{array}\right|\qquad\)である。

4. ベクトル三重積
\(\quad\bm{A}\times(\bm{B}\times\bm{C})=(\bm{A}\cdot\bm{C})\bm{B}-(\bm{A}\cdot\bm{B})\bm{C}\)
\begin{align}
(\bm{A}\times(\bm{B}\times\bm{C}))_x&=A_y(\bm{B}\times\bm{C})_z-A_z(\bm{B}\times\bm{C})_y\\
&=A_y(B_xC_y-B_yC_x)-A_z(B_zC_x-B_xC_z)\\
&=(A_yC_y+A_zB_z)B_x-(A_yB_y+A_zB_z)C_x\\
&=(A_xC_x+A_yC_y+A_zB_z)B_x-(A_xB_x+A_yB_y+A_zB_z)C_x\\
&=(\bm{A}\cdot\bm{C})B_x-(\bm{A}\cdot\bm{B})C_x\\[6pt]
&\hspace{-12mm}\text{同様にして}\\[2pt]
(\bm{A}\times(\bm{B}\times\bm{C}))_y&=(\bm{A}\cdot\bm{C})B_y-(\bm{A}\cdot\bm{B})C_y\\[2pt]
(\bm{A}\times(\bm{B}\times\bm{C}))_z&=(\bm{A}\cdot\bm{C})B_z-(\bm{A}\cdot\bm{B})C_z\\[8pt]
&\hspace{-18mm}\therefore\quad \bm{A}\times(\bm{B}\times\bm{C})=(\bm{A}\cdot\bm{C})\bm{B}-(\bm{A}\cdot\bm{B})\bm{C}
\end{align}
5. 微分演算子
\(\quad\nabla=\left(\,\dd{}{x}\,,\,\dd{}{y}\,,\,\dd{}{z}\,\right)\)

2.勾配、発散、回転

勾配( grad ):grad\(\,\phi(\bm{r})=\nabla\,\phi(\bm{r})\equiv\left(\,\dd{}{x}f\,,\,\dd{}{y}f\,,\,\dd{}{z}f\,\right)\)

発散 ( div ):div\(\,\bm{A}(\bm{r})=\nabla\cdot\bm{A}(\bm{r})\equiv\,\dd{}{x}A_x+\dd{}{y}A_y+\dd{}{z}A_z\)

回転 ( rot ):rot\(\,\bm{A}(\bm{r})=\left(\dd{}{y}A_z-\dd{}{z}A_y\,,\,\dd{}{z}A_x-\dd{}{x}A_z\,,\,\dd{}{x}A_y-\dd{}{y}A_x\,\right)\)
\(\hspace{8mm}\)または \(\quad(\nabla\times\bm{A})_i=\di\sum_{j,k=1}^3\epsilon_{ijk}(\nabla)_j(\bm{A})_k=\di\sum_{j,k=1}^3\epsilon_{ijk}\,\partial_jA_k\)

3.計算例-1

\(\quad\bm{r}=(x,y,z)\quad r=|\bm{r}|\ne 0\quad\)とする。

(1)\(\,\nabla\,r\)
\begin{align}
\nabla\,r&=\nabla(\sqrt{x^2+y^2+z^2})\\[2pt]
&=\left(\dfrac{x}{\sqrt{x^2+y^2+z^2}}\,,\,\dfrac{y}{\sqrt{x^2+y^2+z^2}}\,,\,\dfrac{z}{\sqrt{x^2+y^2+z^2}}\,\right)\\[2pt]
&=\dfrac{\bm{r}}{r}
\end{align}
(2)\(\,\nabla\left(\dfrac{1}{r}\right)\)
\begin{align}
\nabla\left(\dfrac{1}{r}\right)&=\left(\dd{}{x}\dfrac{1}{\sqrt{x^2+y^2+z^2}}\,,\,\dd{}{y}\dfrac{1}{\sqrt{x^2+y^2+z^2}}\,,\,\dd{}{z}\dfrac{1}{\sqrt{x^2+y^2+z^2}}\,\right)\\[3pt]
&=\left(\,\dfrac{-x}{(x^2+y^2+z^2)^{3/2}}\,,\,\dfrac{-y}{(x^2+y^2+z^2)^{3/2}}\,,\,\dfrac{-z}{(x^2+y^2+z^2)^{3/2}}\,\right)\\[3pt]
&=-\dfrac{\bm{r}}{r^3}
\end{align}
(3)\(\,\nabla\cdot\bm{r}\)
\begin{equation}
\nabla\cdot\bm{r}=\dd{}{x}x+\dd{}{y}y+\dd{}{z}z=3
\end{equation}
(4)\(\,(\nabla\cdot\nabla)\,r\)
\begin{align}
(\nabla\cdot\nabla)r&=\left(\dda{}{x^2}+\dda{}{y^2}+\dda{}{z^2}\right)\sqrt{x^2+y^2+z^2}\\[2pt]
&=\dd{}{x}\dfrac{x}{\sqrt{x^2+y^2+z^2}}+\dd{}{y}\dfrac{y}{\sqrt{x^2+y^2+z^2}}+\dd{}{z}\dfrac{z}{\sqrt{x^2+y^2+z^2}}\\[2pt]
&=\dfrac{1}{\sqrt{x^2+y^2+z^2}}-\dfrac{x^2}{(x^2+y^2+z^2)^{3/2}}\\
& +\dfrac{1}{\sqrt{x^2+y^2+z^2}}-\dfrac{y^2}{(x^2+y^2+z^2)^{3/2}}\\
& +\dfrac{1}{\sqrt{x^2+y^2+z^2}}-\dfrac{z^2}{(x^2+y^2+z^2)^{3/2}}\\[2pt]
&=\dfrac{3}{r}-\dfrac{(x^2+y^2+z^2)}{r^3}=\dfrac{2}{r}
\end{align}
(5)\(\,\nabla\times\bm{r}\)
\begin{equation}
\nabla\times\bm{r}=\left(\dd{}{z}y-\dd{}{y}z\,,\,\dd{}{x}z-\dd{}{z}x\,,\,\dd{}{y}x-\dd{}{x}y\right)=\bm{0}
\end{equation}
(6)\(\,\nabla\times(\nabla\phi)\hspace{10mm}\mathrm{rot}\,\,\mathrm{grad}\,\,\phi\)
\begin{align}
\nabla\times(\nabla\phi)&=\left(\,\dd{}{y}(\dd{\phi}{z})-\dd{}{z}(\dd{\phi}{y})\,\,,\right.\\
&\hspace{20mm}\dd{}{z}(\dd{\phi}{x})-\dd{}{x}(\dd{\phi}{z})\,\,,\\
&\hspace{30mm}\left.\dd{}{x}(\dd{\phi}{y})-\dd{}{y}(\dd{\phi}{x})\,\right)\\
&=0\hspace{40mm}\because\,\,\dd{}{y}(\dd{\phi}{z})=\dd{}{z}(\dd{\phi}{y})
\end{align}
(7)\(\,\nabla\cdot(\nabla\times\bm{A})\hspace{10mm}\mathrm{div}\,\,\mathrm{rot}\,\,\bm{A}\)
\begin{align}
\nabla\cdot(\nabla\times\bm{A})&=\dd{}{x}(\dd{A_z}{y}-\dd{A_y}{z})+\dd{}{y}(\dd{A_x}{z}-\dd{A_z}{x})+\dd{}{z}(\dd{A_y}{x}-\dd{A_x}{y})\\[3pt]
&=\dfrac{\partial^2A_z}{\partial x\partial y}-\dfrac{\partial^2A_y}{\partial x\partial z}+\dfrac{\partial^2A_x}{\partial y\partial z}-\dfrac{\partial^2A_z}{\partial y\partial x}+\dfrac{\partial^2A_y}{\partial z\partial x}-\dfrac{\partial^2A_x}{\partial z\partial y}\\[3pt]
&=0\hspace{40mm}\because\,\,\,\dfrac{\partial^2A_z}{\partial x\partial y}=\dfrac{\partial^2A_z}{\partial y\partial x}
\end{align}
(8)\(\,\nabla\times(\nabla\times\bm{A})\hspace{10mm}\mathrm{rot}\,\,\mathrm{rot}\,\,\bm{A}\)
\begin{align}
(\nabla\times(\nabla\times\bm{A}))_x&=\dd{}{y}\left(\dd{A_y}{x}-\dd{A_x}{y}\right)-\dd{}{z}\left(\dd{A_x}{z}-\dd{A_z}{x}\right)\\[3pt]
&=\dfrac{\partial^2}{\partial y\partial x}A_y-\dda{}{y^2}A_x-\dda{}{z^2}A_x+\dfrac{\partial^2}{\partial z\partial x}A_z\\[3pt]
&=\dda{}{x^2}A_x+\dfrac{\partial^2}{\partial y\partial x}A_y+\dfrac{\partial^2}{\partial z\partial x}A_z-\left(\dda{}{x^2}+\dda{}{y^2}+\dda{}{z^2}\right)A_x\\[3pt]
&=\dd{}{x}\left(\dd{A_x}{x}+\dd{A_y}{y}+\dd{A_z}{z}\right)-\Delta A_x\\[3pt]
&=\dd{}{x}(\nabla\cdot\bm{A})-\Delta A_x\\[3pt]
&\hspace{-20mm}\text{同様に}\\
(\nabla\times(\nabla\times\bm{A}))_y&=\dd{}{y}(\nabla\cdot\bm{A})-\Delta A_y\\[3pt]
(\nabla\times(\nabla\times\bm{A}))_z&=\dd{}{z}(\nabla\cdot\bm{A})-\Delta A_z\\[3pt]
&\hspace{-20mm}\text{よって}\\[2pt]
\nabla\times(\nabla\times\bm{A})&=\nabla(\nabla\cdot\bm{A})-\Delta\bm{A}
\end{align}

光の速度


\(\def\bm{\boldsymbol}\)
\(\def\di{\displaystyle}\)
\(\def\ve{\varepsilon_0}\)
\(\def\dd#1#2{\dfrac{\partial #1}{\partial #2}}\)
\(\def\dda#1#2{\dfrac{\partial^2 #1}{\partial #2}}\)
オーソドックスな形で、光(電磁波)の真空中の速度を求めてみる。

[1]マックスウェル方程式

光も電磁波なので、マックスウェルの方程式に従う。マックスウェル方程式は4つに分けられる。
(1)電場の発散
\[\mbox{div }\bm{E}=\nabla\cdot\bm{E}=\dfrac{\rho}{\ve}\tag{1.1}\]
電場の源が電荷であり、電場が電荷から放射状であることを表す。
ここで \(\,\rho\,\)は電荷密度で、\(\ve\,\)は真空の誘電率である。
(2)電場の回転
\[\mbox{rot }\bm{E}=\nabla\times\bm{E}=-\dd{\bm{B}}{t}\tag{1.2}\]
磁束密度の変化により電場が生じる Faradayの法則=電磁誘導の法則
(3)磁場の発散
\[\mbox{div }\bm{B}=\nabla\cdot\bm{B}=0\quad\tag{1.3}\]
磁場には源がない
(4)磁場の回転
\[\mbox{rot }\bm{B}=\nabla\times\bm{B}=\mu_0(\bm{j}+\ve\dd{\bm{E}}{t})\tag{1.4}\]
電流及び電場の変化が磁場を生むことを表す。Ampére-Maxwellの法則
ここで\(\,\mu_0\,\)は真空の透磁率である。

[2]マックスウェル方程式の展開

真空中を伝わる電磁波について考えたいので, 電荷密度はいたるところで\(\,0\,\)であるとする. よって電流密度も\(\,0\,\)であるので、次の4つの式が得られる。
\begin{align}
\mbox{div }\bm{E}&=0 \tag{2.1}\\
\mbox{rot }\bm{E}&=-\dd{\bm{B}}{t} \tag{2.2}\\
\mbox{div }\bm{B}&=0 \tag{2.3}\\
\mbox{rot }\bm{B}&=\mu_0\ve\dd{\bm{E}}{t} \tag{2.4}
\end{align}
場の回転を改めて場とみなして、回転を調べる。式\(\,(2.2)\,\)を回転すると
\begin{align}
\nabla\times(\nabla\times\bm{E})&=-\dd{}{t}(\nabla\times\bm{B})\\
&=-\mu_0\dd{}{t}\left(\bm{j}+\ve\dd{\bm{E}}{t}\right)\\
&=-\mu_0\dd{\bm{j}}{t}-\mu_0\ve\dda{\bm{E}}{t^2}\tag{2.5}
\end{align}
となり、電流密度の他には電場のみの閉じた形となる。ここでは、ベクトル解析のベクトルの回転の回転からラプラシアンを導く、以下の公式を用いる。
\[\nabla\times(\nabla\times\bm{A})=\nabla(\nabla\cdot\bm{A})-\Delta\bm{A}\qquad\because\,\,\Delta\equiv\nabla\cdot\nabla\tag{2.6}\]
この公式を\(\,(2.5)\,\)式の右辺に適用する。
\begin{align}
\nabla\times(\nabla\times\bm{E})&=\nabla(\nabla\cdot\bm{E})-\Delta\bm{E}\\[3pt]
&=0-\Delta\bm{E}\qquad\,\because\,\,\nabla\cdot\bm{E}=0\quad(2.1)\,\,\text{より}\\[3pt]
&=-\Delta\bm{E}\tag{2.7}
\end{align}
\(\,(2.5)\,\)式と\(\,(2.6)\,\)をあわせると
\[\Delta\bm{E}-\mu_0\ve\dda{\bm{E}}{t^2}-\mu_0\dd{\bm{j}}{t}=0\tag{2.8}\]
ここの電流は\(\,0\,\)なので、第3項は消せる。ここで、\(x\,\)成分で考えると。
\[\dda{\bm{E}}{x^2}-\mu_0\ve\dda{\bm{E}}{t^2}=0\tag{2.10}\]
の形の波動方程式が得られる。

[3]波動方程式の一般解

この方程式の解は次のような形で表される。例えば\(\,\bm{E}\,\)の振幅を\(\,z\,\)軸にとると、解は
\[E_z=f(x-vt)+g(x+vt)\tag{3.1}\]
の形で表せる。ここで、\(f\,\)と\(\,g\,\)は任意の関数であり、\(f(x − vt)\,\,\)は\(\,x\,\)軸の正の向きに速さ\(\,v\,\)で
進む波動を表し、\(g(x + vt)\,\,\)は\(\,x\,\)軸の負の向きに速さ\(\,v\,\)で進む波動を表す。
ここで、式\(\,(2.2)\,\)を成分に分解する。
\begin{align}
\dd{E_z}{y}-\dd{E_y}{z}&=-\dd{B_x}{t}\\
\dd{E_x}{z}-\dd{E_z}{x}&=-\dd{B_y}{t}\\
\dd{E_y}{x}-\dd{E_x}{y}&=-\dd{B_z}{t}
\end{align}
ここで、\(E_x=0\,\,,\,\,E_y=0\,\)なので、次のような結果となる
\begin{align}
\dd{B_x}{t}&=0\\
\dd{B_y}{t}&=f^{\prime}(x-vt)+g^{\prime}(x+vt) \tag{3.2}\\
\dd{B_z}{t}&=0
\end{align}
式\(\,(3.2)\,\)を\(\,t\,\)で積分すると
\[B_y=-\dfrac{1}{v}f(x-vt)+\dfrac{1}{v}g(x+vt)\tag{3.3}\]
となる。つまり、\(E_z\,\)と\(\,B_y\,\)は、同じ関数\(\,f\,\)と\(\,g\,\)で表され、両者が互いに組み合って、離れることなく、同じ速さ\(\,v\,\)を持つ波動となって\(\,x\,\)軸を伝搬する。

電場と磁場の進行波

[4]電磁波の伝搬する速さ

波動方程式の一般解と波動方程式を再掲する。
\begin{align}
&E_z=f(x-vt)+g(x+vt)\tag{3.1}\\
&\dda{\bm{E}}{x^2}-\mu_0\ve\dda{\bm{E}}{t^2}=0\tag{2.10}
\end{align}
この\(\,(3.1)\,\)式を\(\,(2.10)\,\)に代入する。このとき、\(x-vt=p\,\,,\,\,x+vt=q\,\,\)とする。
\[\dd{E_z}{x}=\dd{f}{x}+\dd{g}{x}=\dd{f}{p}\dd{p}{x}+\dd{g}{q}\dd{q}{x}=\dd{f}{p}+\dd{g}{q}\quad\text{なので}\]
\[\dda{E_z}{x^2}=\dda{f}{p^2}+\dda{g}{q^2}\qquad\text{となる。次に時間で微分する。}\]
\[\dd{E_z}{t}=\dd{f}{t}+\dd{g}{t}=\dd{f}{p}\dd{p}{t}+\dd{g}{q}\dd{q}{t}=-v\dd{f}{p}+v\dd{g}{q}\quad\text{なので}\]
\[\dda{E_z}{t^2}=v^2\dda{f}{p^2}+v^2\dda{g}{q^2}=v^2\dda{E_z}{x^2}\qquad\text{となるので}\quad (2.10)\,\text{より}\]
\[v^2=\dfrac{1}{\mu_0\ve}\qquad\text{よって}\qquad v=\dfrac{1}{\sqrt{\mu_0\ve}}\tag{4.1}\]
真空の誘電率\(\,\ve\,\)と透磁率\(\,\mu_0\,\)の値

\(\qquad\ve=\dfrac{10^7}{4\pi c^2}\quad[\,\mathrm{C}\cdot\mathrm{N}^{-1}\cdot\mathrm{m}^{-2}\,\,]\hspace{20mm}\mu_0=4\pi\times 10^{-7}\quad[\,\,\mathrm{N}\cdot\mathrm{A}^{-2}\,\,]\quad\)を代入すると

\(\qquad\quad v=\dfrac{1}{\sqrt{\mu_0\ve}}=c\qquad\)となり、電磁波の速度が光速と一致する。

まあ、誘電率の定義からして、光速を使っているので当然の結果である。