月別アーカイブ: 2020年12月

積分その1

積分その1

【1】\(\,\,\displaystyle\int_0^{\infty}xe^{-ax}dx\quad\)の計算

\(\quad\displaystyle\int_0^{\infty}xe^{-ax}dx\quad\cdots\,\)(1)

まず、\(\,\displaystyle\int xe^{-ax}dx\,\,\)の不定積分から計算する。

部分積分で考えると

\(\quad\displaystyle\int xe^{-ax}dx=x(-ae^{-ax})+\dfrac{1}{a}\displaystyle\int e^{-ax}dx\)
\(\qquad=-axe^{-ax}+\dfrac{1}{a}\displaystyle\int e^{-ax}dx\quad\cdots\,\)(2)

(1)式の定積分を考える時、まず次の極限を計算する。

\(\quad\displaystyle\lim_{x\to\infty}\dfrac{x}{e^x}\quad\cdots\,\)(3)

\(\quad x\ge 0\,\,\)のとき\(\,\,e^x\ge\dfrac{x^2}{2}\,\,\)を考える。

\(\quad f(x)=e^x-\dfrac{x^2}{2}\quad\cdots\,\)(4)

とすると、\(x\ge 0\quad\)のとき、\(f'(x)\gt 0\,\,,\quad f^{\prime\prime}\gt 0\quad\)なので、\(f(x)\gt 0\quad\)である。よって

\(\,\,e^x\ge\dfrac{x^2}{2}\,\,\)が成り立つ。そこで

\(\quad 0\ge \dfrac{x}{e^x}\ge \dfrac{x}{\frac{x^2}{2}}\quad\)つまり\(\quad 0\ge \dfrac{x}{e^x}\ge \dfrac{2}{x}\quad\)となり、

\(\quad\displaystyle\lim_{x\to\infty}\dfrac{2}{x}=0\quad\)なので\(\quad\displaystyle\lim_{x\to\infty}\dfrac{x}{e^x}=0\quad\cdots\,\)(5)

となる。

この結果 (2)式を\(\,0\,\)から\(\,\infty\,\)まで積分すると

\(\quad\displaystyle\int_0^{\infty}xe^{-ax}dx=\left[-axe^{-ax}\right]_0^{\infty}+\dfrac{1}{a}\displaystyle\int_0^{\infty}e^{-ax}dx\)

\(\qquad =0-0+\dfrac{1}{a}\left[-\dfrac{1}{a}e^{-ax}\right]_0^{\infty}=\dfrac{1}{a^2}\quad\cdots\,\)(6)

グラフは\(\,y=xe^{-x}\,\)である。\(x\,\to\,\infty\,\)まで積分すると斜線部分の面積は\(\,1\,\)となります。







ビリアル定理

1-1. クラウジウスのビリアル定理

ビリアル定理は 19世紀に Clausius によって考案された。
「系の平均活力は、その(平均)ビリアル(の大きさ)に等しい。」
ここで登場する「活力」(”vis viva”)は、今日の運動エネルギーに相当します。 そもそも「活力」は古典力学の草創期にライプニッツが導入した量で、今日の運動エネルギーの2倍に相当する量 \(\,mv^2\,\)ですが、クラウジウスは \(\,mv^2/2\,\)とちょうど運動エネルギーと同じ量として用いています。ビリアル virial はラテン語のvis(「力」)からクラウジウスが作った造語です。ここでは、(力)×(位置ベクトル)をビリアルと呼ぶことにします。

距離の逆2乗則に従う重力クーロン力の中心力で相互作用しあっている多体系では、長時間平均した運動エネルギー\(\,\langle\,T\,\rangle\,\)と平均の全ポテンシャルエネルギー\(\,\langle\,V\,\rangle\,\)は次の関係式を満たす。

\(\quad 2\langle\,T\,\rangle+\langle\,V\,\rangle=0\quad\cdots\,\)(1)

1-2. ビリアル定理の古典力学的証明

ここで位置ベクトル\(\,\vec{r}\,\)と運動量\(\,\vec{p}\,\)の内積の総和を以下のように考える。

\(\quad G=\displaystyle\sum_i\vec{p}_i\,\cdot\,\vec{r}_i\quad\cdot\,\)(2)

(2)式を時間\(\,t\,\)で微分する。

\(\quad\dfrac{dG}{dt}=\displaystyle\sum_i\vec{p}_i\cdot\dfrac{d\vec{r}_i}{dt}+\displaystyle\sum_i\dfrac{d\vec{p}_i}{dt}\cdot\vec{r}_i\)
\(\qquad\quad=\displaystyle\sum_i\,m_i(\vec{v}_i)^2+\displaystyle\sum_i\vec{F}_i\cdot\vec{r}_i\)
\(\qquad\quad=\displaystyle\sum_i2\times\dfrac{1}{2}m_i(\vec{v}_i)^2+\displaystyle\sum_i\vec{F}_i\cdot\vec{r}_i\)
\(\qquad\quad=2T+\displaystyle\sum_i\vec{F}_i\cdot\vec{r}_i\quad\cdots\,\)(3)

ここでは、次の関係式を使用している。

\(\quad \vec{p}_i=m_i\vec{v}_i\,,\qquad\vec{v}_i=\dfrac{d\vec{r}_i}{dt}\,,\qquad\vec{F}_i=\dfrac{d\vec{p}_i}{dt}\quad\cdots\,\)(4)

(3)式の両辺を\(\,0\,\)から時間\(\,t\,\)の範囲で積分して\(\,t\,\)で割り、\(t\to\infty\,\)の極限をとって長時間平均する。すると粒子が動き得る範囲は有限なので\(\,G\,\)も有限だから、左辺は\(\,0\,\)に収束する。

\(\quad\displaystyle\lim_{t\to\infty}\dfrac{1}{t}\displaystyle\int_0^t\dfrac{dG}{dt}=\displaystyle\lim_{t\to\infty}\dfrac{G(t)-G(0)}{t}=0\quad\cdots\,\)(5)

したがって、

\(\quad 0=2\langle\,T\,\rangle+\left\langle\displaystyle\sum_i\vec{F}_i\cdot\vec{r}_i\right\rangle\quad\cdots\,\)(6)

つまり、ビリアル定理を得る。

\(\quad\langle\,T\,\rangle=-\dfrac{1}{2}\left\langle\displaystyle\sum_i\vec{F}_i\cdot\vec{r}_i\right\rangle\quad\cdots\,\)(7)

次にポテンシャルエネルギー\(\,V\,\)が中心力ポテンシャルで、粒子間の距離に反比例する形で、系のポテンシャル\(\,V\,\)が各粒子対の相互作用の和によって書き表される場合、以下のように表される。

\(\quad V(r_1,\cdots,r_N)=\displaystyle\sum_{i\lt j}\dfrac{a_{ij}}{|\vec{r}_i-\vec{r}_j|}\quad\cdots\,\,\)(8)

粒子\(\,i\,\)に作用する力の合計\(\,\vec{F}_i\,\)は、ポテンシャルを位置座標で微分することで以下のように表すことが出来る。

\(\quad\vec{F}_i=-\nabla_{r_i}V=\displaystyle\sum_{j\ne i}\dfrac{a_{ij}(\vec{r}_i-\vec{r}_j)}{|\vec{r}_i-\vec{r}_j|^3}=\displaystyle\sum_{j\ne i}\vec{F}_{ij}\quad\cdots\,\)(9)

ここで、\(\,\vec{F}_{ij}\,\)は、粒子\(\,j\,\)から粒子\(\,i\,\)に働く力である。

\(\quad\vec{F}_{ij}=a_{ij}\dfrac{\vec{r}_i-\vec{r}_j}{|\vec{r}_i-\vec{r}_j|^3}\quad\cdots\,\)(10)

この\(\,\vec{F}_{ij}\,\)を用いると、ビリアル(力と位置ベクトルの内積)は次のように表せる。

\(\quad\displaystyle\sum_i\vec{F}_i\cdot\vec{r}_i=\displaystyle\sum_{i,j(i\lt j)}\vec{F}_{ij}\cdot\vec{r}_i+\displaystyle\sum_{i,j(j\lt i)}\vec{F}_{ij}\cdot\vec{r}_i\)
\(\qquad\qquad\quad=\displaystyle\sum_{i,j(i\lt j)}\vec{F}_{ij}\cdot\vec{r}_i+\displaystyle\sum_{i,j(i\lt j)}\vec{F}_{ji}\cdot\vec{r}_j\qquad\because\,i\leftrightarrow j\)
\(\qquad\qquad\quad=\displaystyle\sum_{i,j(i\lt j)}\vec{F}_{ij}\cdot(\vec{r}_i-\vec{r}_j)\quad\because\,\vec{F}_{ji}\!=\!-\vec{F}_{ij}\,\,\cdots\,\)(11)

(10)式を(11)式に代入すると

\(\quad\displaystyle\sum_i\vec{F}_i\cdot\vec{r}_i=\!\displaystyle\sum_{i,j(i\lt j)}\dfrac{a_{ij}}{|\vec{r}_i-\vec{r}_j|}\)
\(\qquad\qquad\qquad=\displaystyle\sum_{i,j(i\lt j)}\!V_{ij}=\!\displaystyle\!\sum_{i,j(i\lt j)}\!V_{ji}\quad\cdots\,\)(12)

よって(6)式は以下のように表すことが出来る。

\(\quad 0=2\langle\,T\,\rangle+\left\langle\displaystyle\sum_i\vec{F}_i\cdot\vec{r}_i\right\rangle=2\langle\,T\,\rangle+\left\langle\displaystyle\sum_{i,j(i\lt j)}V_{ij}\right\rangle\)
\(\qquad\qquad=2\langle\,T\,\rangle+\langle\,V\,\rangle\quad\cdots\,\)(13)







ドメイン変更

tamami.tech というドメインを取得したけど、更新料が 3,400 円と高額なので、tamami8.net という 更新料 1,480 円のドメインに変更しました。
まあ変更と行っても、”*.tech” のドメインは 2021年の6月まで有効ですが、HTML のソースを順次書き換え中です。

最近、ロリポップではサーバーレンタルとドメイン取得をまとめてやると、更新料無料らしい。まあ、しょうがないと諦めています。

懸垂線


ひもの両端を持って垂らしたときにできる曲線を懸垂曲線( カテナリー catenary )といいますが、この曲線の方程式を導いてみる。

ひもの底を原点\(O\,\)とし、水平方向に\(x\,\)軸、鉛直方向に\(y\,\)軸をとる。ひもの曲線を\(\,y=f(x)\,\)とおいて関数\(\,f(x)\,\)を求める。

ひもの\(\,x>0\,\)の部分に点\(\,(x,f(x))\,\)をとり、これを\(P\,\)とします。また、ひもの\(O\,\)から\(P\,\)の部分(両端を含む)を\(C\,\)とします。

【\(\,f(x)\,\)に対する微分方程式を立てる】

ひもの一部\(\,C\,\)に加わる力の釣り合いの式から\(\,f(x)\,\)についての微分方程式を立てる。\(C\,\)には次の3つの力が加わっている。

  • 点\(\,O\,\)に水平方向のひもの張力\(\,T_0\)
  • 点\(\,P\,\)に接線方向上向きにひもの張力\(\,T\)
  • \(\,C\,\)の重心に鉛直下向きに重力\(\,G\)

ここで、原点にはたらく張力\(\,T_0\,\)は\(\,x\,\)に関係なく一定なので定数とする。

\(T\,\)について、\(P\,\)における\(\,f(x)\,\)の接線と\(\,x\,\)軸の正の部分とのなす角を\(\,\theta\,\)とすると、\(T\,\)の\(\,x\,\)成分、\(y\,\)成分はそれぞれ\(\,T\cos\theta\,,\,T\sin\theta\,\)となる。

この角度\(\,\theta\,\)と\(\,f(x)\,\)は、\(x\,\)における微分が接線なので
\(\quad f'(x)=\tan\theta\quad\)となる。

\(C\,\)の長さを\(\,l\,\)とすると曲線の長さの式から
\(\quad l=\displaystyle\int_0^x\sqrt{1+\{f'(x)\}^2}dx\quad\)で求められる。

線密度を\(\,\rho\,\)、重力加速度を\(\,g\,\)とすると
\(\quad G=\rho lg=\rho g\quad\)となる。

これらより釣り合いの式は以下のようになる。

  • 鉛直方向:\(\,T\sin\theta=\rho lg\)
  • 水平方向:\(\,T\cos\theta=T_0\)

\(T\,\)を消去して、定数をまとめて \(\,k=\dfrac{\rho g}{T_0}\,\,\)とおくと

\(\quad f'(x)=k\displaystyle\int_0^x\sqrt{1+\{f'(x)\}^2}dx\quad\)となる。

両辺を\(\,x\,\)で微分すると

\(\quad f^{\prime\prime}(x)=k\sqrt{1+\{f'(x)\}^2}\quad\)となる。

境界条件は\(\quad f(0)=0\,\,,\quad f'(0)=0\quad\)となる。

【微分方程式を解く】

この微分方程式を解く。\(\quad z=f'(x)\quad\)とおくと

\(\quad\dfrac{dz}{dx}=k\sqrt{1+z^2}\)
\(\quad\dfrac{dz}{\sqrt{1+z^2}}=k\,dx\quad\)となる。

先程の条件で\(\quad f'(x)=\tan\theta=z\quad\)なので
\(\quad dz=\dfrac{1}{\cos^2\theta}d\theta\quad\)となる。よって、

\(\quad \dfrac{dz}{\sqrt{1+z^2}}=\dfrac{1}{\sqrt{1+\tan^2\theta}}\dfrac{d\theta}{\cos^2\theta}=\dfrac{d\theta}{\sqrt{\dfrac{\cos^2\theta+\sin^2\theta}{\cos^2\theta}}\cos^2\theta}\)
\(\qquad =\dfrac{d\theta}{\cos\theta}\quad\)となる。

このままでは積分出来ないので、\(\quad\dfrac{d}{d\theta}\sin\theta=\cos\theta\quad\)を利用して

\(\quad\dfrac{d\theta}{\cos\theta}=\dfrac{d(\sin\theta)}{\cos^2\theta}=\dfrac{d(\sin\theta)}{(1-\sin\theta)(1+\sin\theta)}\)

\(\quad =\dfrac{1}{2}\left(\dfrac{1}{1-\sin\theta}+\dfrac{1}{1+\sin\theta}\right)\,d(\sin\theta)\quad\)となる。

この形なら積分可能なので\(\,\,\sin\theta\,\,\)で積分する。

\(\quad\displaystyle\int\dfrac{dz}{\sqrt{1+z^2}}=\dfrac{1}{2}\displaystyle\int\left(\dfrac{1}{1-\sin\theta}+\dfrac{1}{1+\sin\theta}\right)\,d(\sin\theta)\)

\(\quad=\dfrac{1}{2}\left\{-\log(1-\sin\theta)+\log(1+\sin\theta)\right\}\)

\(\quad=\dfrac{1}{2}\log\left(\dfrac{1+\sin\theta}{1-\sin\theta}\right)\)

よって\(\quad z=\tan\theta\quad\)として

\(\quad f'(x)=\displaystyle\int\dfrac{dz}{\sqrt{1+z^2}}=\dfrac{1}{2}\log\left(\dfrac{1+\sin\theta}{1-\sin\theta}\right)=kx+C_1\quad\) となる。

境界条件\(\quad f'(x)=0\quad x=0\,\,,\,\theta=0\quad\)より\(\quad C_1=0\,\,\)。

\(\quad\dfrac{1+\sin\theta}{1-\sin\theta}=e^{2kx}\quad\)より、まず\(\quad\sin\theta\quad\)について解く。

\(\quad 1+\sin\theta=e^{2kx}(1-\sin\theta)\qquad (e^{2kx}+1)\sin\theta=e^{2kx}-1\)

\(\quad \sin\theta=\dfrac{e^{2kx}-1}{2^{2kx}+1}\quad\)となる。ここから以下の公式を使う。

\(\quad 1+\dfrac{1}{\tan^2\theta}=\dfrac{\tan^2\theta+1}{\tan^2\theta}=\dfrac{\sin^2\theta+\cos^2\theta}{\sin^2\theta}=\dfrac{1}{\sin^2\theta}\)

\(\quad\dfrac{1}{\tan^2\theta}=\left(\dfrac{e^{2kx}+1}{2^{2kx}-1}\right)^2-1\)

\(\qquad=\dfrac{(e^{2kx}+1)^2-(e^{2kx}-1)^2}{(e^{2kx}-1)^2}\)

\(\qquad=\dfrac{4e^{2kx}}{(e^{2kx}-1)^2}\quad\)より

\(\quad\tan\theta=\dfrac{e^{2kx}-1}{2e^{kx}}=\dfrac{e^{kx}-e^{-kx}}{2}=\sinh kx\)

\(\quad f'(x)=z=\tan\theta=\sinh kx\quad\)なので

\(\quad f(x)=\displaystyle\int\dfrac{e^{kx}-e^{-kx}}{2}dx=\dfrac{e^{kx}+e^{-kx}}{2k}+C_2\)

境界条件が\(\quad f(0)=0\quad\)なので\(\quad C_2=-k\quad\)より

\(\quad f(x)=\dfrac{e^{kx}+e^{-kx}}{2k}-k=\dfrac{\cosh kx-1}{k}\)